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At the present time a number of papers has been already devoted to the 

dynamics of two-phase media. One may mention the papers by Frenkel’ 
[ 1 ] , Rakhmatul in [ 3 I , Biot [ 3,4 I , Zwikker and Kosten [ 5 1 , and 

others. However, the basic problem of the setting up of the equations 

of motion in two-phase media still cannot be considered solved and 

requires additional study and experimental verification. 

This paper is concerned with the study of the simplest case of 

motion, which is the propagation of elastic waves in a homogeneous 

isotropic medium consisting of a solid and a fluid phase. The problems 

of the reflection of plane waves and surface waves at the free bound- 

ary of the half-space are solved. It is shown that the stress-strain 

relations established by Frenkel’ are equivalent to the analogous 

relations proposed by Biot and that the equations of motion of the 

latter are more general. 

1. Basic equations. 'Ihe interpenetrating motion of the solid and 
fluid phases will be analysed as a motion of the fluid in a deforming 

porous medium. We shall assume that the dimensions of the pores are small 

as compared to the distance in which the kinematic and dynamic character- 

istics of motion change substantially. This allows us to assume both 

media to be continuous, and thus we shall have at every point of the 

space two displacement vectors: the displacement vector u of the solid 

phase (the skeleton of the porous medium) and the displacement vector v 

of the fluid. As it was shown by Frenkel' [ 11, the total stress tensor 
in the skeleton (taking into account the pressure of the fluid in the 

pores) can be written in the form 

Pik = LO& + 2Guik + R,(l- IIL- 2) $ik (1.1) 
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8= ~11 + uz2 + us3 == div 11, 

where L, G, and K are respectively the Lam& coefficients and the bulk 
modulus of the porous skeleton with empty pores, K, is the actual bulk 

modulus of the solid phase, R, is the bulk modulus of the fluid, m is 
the porosity, u.. is the strain tensor of the skeleton, 0 is the relative 

volume change (iflatation) of the skeleton, 4 is the relative change of 

the actual density of the fluid, aik is the Kronecker delta, which is 

equal to unity when i = k and equal to zero when i f k. 

The change of the porosity can be expressed according to [ 11 by the 

formula 

(1.2) 

The constant coefficient a is scme additional parameter which charac- 
terizes the elastic properties of the porous medium (when the porosity is 

constant n = 0). 

A small change of pressure in the liquid is related to a small change 

of density by the equation 

Ap=-RR,9 (I.3 

‘Ihe continuity equation expressing the law of conservation of mass has 
the form 

-k (mp) + div (mp g )= 0 (1.4) 

By linearizing and expressing it in finite differences we obtain 

where E is the 

By taking into 

mAp+pAm+ m:e=O E = div 27 (I.51 

relative change of the volume (dilatation) of the fluid. 

account (1.2) we find 

(1.6) 

When (1.6) is substituted into (1.1) and (1.3) they become 

Pi,< = ho&i/, + 21*&l, + QE& 9 CJ = - m Ap = Q’O + RE (1.7) 

where o represents the force acting upon the fluid per unit cross section 

of the porous medium, and the other symbols are 
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Q=B(l -m-- ;,) Ro, Q' = f%zR,, A = BmR, (1.8) 

The work of the forces acting upon an element of the solid and fluid 

phase is 

d’A -L Pii;dUik + ads = h%dB + 2:1~ikd~ik + Q&d8 + Q’flde + R&ds 

For the existence of potential energy this expression should be a 

total differential, and consequently the relation $2 = Q'.holds and thus, 

when (1.8) is utilized, we obtain 

ad-m-~0 (1.9) 

Equation (1.7) coincides with the stress-strain relations established 

by Biot 13 1. If th e shear in the skeleton is neglected the stress tensor 

P ik will contain only diagonal terms, i.e. Pi, = - p1Gik, where p1 is the 
pressure force on the skeleton per unit cross-sectional area of the 

porous medium. Equations (1.7) then become: 

-pPr = (h++ p)e+Q~, --mnadp=Q8+R~ (1.10) 

Let RO< II<< K. (this can happen in the case when the pores are filled 

with a gas). In accordance with (1.8) and (1.2) we obtain for this case 
n 

A+$p=K, R = mRo, Q== (1 -m)R,, Am = (1 -m)e (1.11) 

We introduce the quantity 

pa = mp--mOpo 

liere n0 and p. are the equilibria values of 

pressure of the fluid (gas). Using the equation 

(1.12) 

the porosity and the 

and taking into account (1.10) and (l.11) we obtain (1.13) 

f-h K ” _--= -- 
1 -In aps aP% 
-81’ 

-- 
dt at m dt 

=mR,~+(l-m)(R,--PO); 

which coincides with the equations of Zwikker and Kosten [5 1. 

Let us now obtain the equations of motion, at first neglecting the 
viscosity of the fluid. 

lhe force acting on the skeleton (per unit volume of the porous medium) 

is equal to the time derivative of the total ants of the skeleton (in 
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this volume). 'Ihe latter consists of the momentum of the skeleton with 

absolutely empty pores and the additional mounts arising due to the 

relative motion of the phases of the medium, i.e. 

Thus we have 

Analogously we find the total momentum of the fluid 

i2 = p2 $ + p1z 
( 
% - $- 

) 

au (7V 
=- PI2 -gi- = P22dt 

and obtain the second equation of motion 

(1.14) 

(l.lti,l 

(1.17) 

The coefficient pf2 shall be called, according to f4 I, the coefficient 

of dynamic coupling of the skeleton with the fluid, p1 and p2 are the 

masses of the solid and fluid phases per unit volume of the medium, pII 

and pz2 can be regarded as some "effective masses" of these phases: 

PII = p1- PI29 p22 = pz- Fl2 (1.18) 

Since during the motion of a solid body in a fluid its "effective 

mass" is larger than its actual mass (pII > p,), the coefficient p12 has 

to be negative. 

In order to take into account the viscosity in equations (1.15) and 

(1.171, one has to add a term that is proportional to the difference 

between the velocities of the two phases: 

(1.19) 

The constant b can be determined from the condition of satisfying the 

Darcy law for the particular case of stationary flow of the fluid. Thus 

we find 

(1.20) 

where p is the coefficient of viscosity and k is the coefficient of 
permeability, which is proportional to the porosity and the square of 

the pore diameters: 
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k = const mP (1.21) 

If the coefficient of dynamic coupling pi2 is neglected in (1.19), we 

obtain the equations of motion introduced by Frenkel' [ 11. In the case 

of harmonic waves of frequency o (where the displacement vectors depend 

on time as e- 'Ot, equations (1.19) can also be written in the following 

form 
(1.22) 

a%, ap, a%+ 
Plw=- 

axk 
PZT =-m-g-+s 

i > 

where 
s=b-iiop,, (1.23) 

If the shear in the skeleton is neglected, i.e. 

Pik = - p&k = - (I-- m)pdik 

(P, is the actual pressure in the skeleton), we obtain from (1.22) 
(1.24) 

aeuf _ _ i ap, 
- -- 
at2 

_--,_ &“(.f&.), 

Here p, and p are the actual densities of the solid and fluid phases: 

p*=+ -m 
p-k, KI, = -$ K,I = ; (1.25) 

Equations (1.24) coincide with the equations of motion introduced by 

Rakhmatulin [2 1 for multi-phase liquid or gaseous media. 

let us decompose the displacement vectors into irrotational and sole- 

noidal components 

u = W + u1, rot UI = 0, divul = 0 
(1.26) 

7.J = Vl + v1, rot v[ = 0, div vt = 0 

Equations (1.191, together with (1.7), (1.91, and (1.26) reduce to the 
following system: 

akl 
Pllm + PM ata aav'$_b-&Q --VI)= (h + 2~) V2ul -+- QV2vI 

a2ul aav, 
cJ123T+fP22a,z -i-b &l --I)= QV2zq + RV2vl 

azut a 2Vt 
-+p - 

a 
Pll at2 l2 ata + b - (ut - vt) = l~.v~ut at 

a2Ut azvt 
PI2 atz - -t ~22 atP + b & (vt - ut) = 0 

(1.27) 
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In the case of monochromatic waves of frequency o, the first two equa- 

tions of (1.27) with the aid of the linear transformation 

Ul = u1+ Uat vl= Mlul+ Msu, 

and after the introduction of the following notation 

(1.28) 

711 =+, 
PI2 

r1a = -I 
F‘a 

6 

r22 = -7 

ii 

P = PI1 + P22 + hz 

011 
A+& 

z-, 
H %2 = F’ %2 = H’ H=h+2y+R+24 

(1.29) 

cs= K 

reduce to 
P 

where 

vu, + k12Ul = 0, Vsa, + k,“uz L= 0 (1.30) 

kla = q .f- 
( > 

‘, kz2 = z2 $,’ 
c ) (1.311 

z1 and z2 are roots of the quadratic equation 

and the coefficients of the transformation (l.28) are determined from the 

formulas 

Ml= - 772 + l1l~12 + i-f ---la + w32 -t ir 

~22 - w22 + i-f ’ 
MB= 

722 - 22022 + ir f 
y= -$ (1.33) 

bations (1.30) describe the,propagation of longitudinal waves of 

type I and II. 

If the coupling between the solid and the fluid phases of the medium 
is weak 

Tl2 = 0, =J8 = 0 , 7 = 0, 
then we find from (I.321 

and in addition to that the velocities of the I and II longitudinal waves 
are obviously equal to the wave velocities propagating separately in con- 

tinuous elastic and continuous fluid media. According to (1.33) we have 

in this case 

M,=O, Ms= a7 (1.35) 

Let us find the approximate values of the roots of equation (1.32) with 
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the condition y >> 1, which corresponds to the case of low frequency or 

high viscosity 

z1 = l--L (orru22- ar2'2- 
7 

511T2?-- Q22Tll + 2%2~1,+~,,~22-~,22) 

z2 = i T 

all% - Q2 
(1.36) 

As can be easily verified, the damping coefficients of the wave (being 

the imaginary parts of k, and k2) will be here proportional to the square 

of the frequency for the I longitudinal wave and to the square root of 

the frequency for the II longitudinal wave. 'lhus for a very low frequency 

the I longitudinal wave experiences a negligible damping, while the II 

longitudinal wave practically disappears because of the large damping. 

The second two equations of (1.27), which describe the propagation of 

the transverse wave, reduce to 

29 = MfUf, 

where 

With a low frequency the damping 

to the square of the frequency just 

wave. 

v2ut + k,2ut = 0 (1.37) 

j&2 = ” + paM, 02 
F 

(1.38) 

coefficient is here also proportional 

as in the case of the I longitudinal 

The existence of three types of waves in porous media and also their 

damping characteristics were established in the papers I1 1 and 14 1. If 

y << 1, one can neglect the effect of viscosity. It is necessary here, 

however, to keep in mind the fact that w should remain smaller than the 

frequency at which the wave length is comparable to the dimensions of the 

pores. 

2. Reflection of plane waves at the free fiodary of the 
half-space. The boundary conditions at the free surface of the medium 

will be 

Y X 

B 

p,, = 0, P,, -0, o=o (2.1) 

or on the basis of (1,7) 
fl8, HI + 2~q,,, + QE = 0 

-0 
QOll;'&=o 

(2.2) 

After introducing the potentials of the longitudinal and transverse 
waves and taking into account (1.261, (1.28) and (1.3'71, we can write the 

expressions for the total displacement vectors of the skeleton and the 
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fluid 

11 = gradTl + gradrp, + rot?!?, v = III, grad?, + M2 gradyp, + M, roty (2.3? 

after which the boundary conditions reduce to 

(Q -t- R:bJ,) V”px -t- (0 + RM,) Vcp, = 0 

We shall study the case of the incidence of a I longitudinal wave on 

the boundary. The three boundary conditions can be satisfied only be 

allowing the incident wave to create a system of three reflected waves 

at the boundary: two longitudinal waves and a transverse wave. Thus the 

complete sonic field in the medium will be (see Fig.) 

where W1, W2 and W, are unknown reflection coefficients (the multiplier 
e --tit is omitted for brevity). 

After substituting (2.5) into 

of linear equations we find 

(2.4)‘ and solving the resulting system 

(2.6) 

'Ihe notation used here is as follows 

Pi = K,---2l~sin28,, F, = K,-- 2l~.sin?0,, 

K,=h+&+ QM,, K, = A + 2~ + QMz, 

LIZ= ; ;;; 
a 

(2.7) 

At low frequencies the reflection coefficient W2 will be proportional 

to o according to (1.36) and (1.31). Thus, to the first approximation it 

can be assumed that only the I longitudinal and the transverse wave are 

reflected from the boundary. 

In the case of an incidence of the wave normal to the boundary 
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te, = e2 = 8, = Of 

w,=--I, w,=o, wt=o (2.8) 

i.e. only the I longitudinal wave will be reflected. 

When we let the porosity approach zero and then assume that relation 

(I.351 holds as well as the equalities 

kl ain$ 
k + 2P = P&,2, E" = p&t? - = -$ =m 

ki 

where c1 and ct are the velocities of the longitudinal and transverse 

waves, we obtain the well known reflection coefficients for a continuous 

isotropic elastic medium 16 I : 

wt= 
c*ros O*tgW1 -CiCOSOt 

cllos0~lg~2 el+c~tos 8,’ 
W 2=0 

cpill2 01 Zc*cos et 
(2.9) 

wt=------ 
SC082 et CtCOS 01tg*z e* f ClCOS et 

Assume that a II longitudinal wave is incident upon the boundary. 

Similarly to the above we find 

W 1 ks --- - 
l-- c > &a kl a($ i-W,) 

F1 - L,%Fa+p (sin2G1i-Ld4n%) tg2$ 
w2=- F1 - LlzF, + p (sini01:-L12siniQ,) tg%o, 

(2.10) 

w,_,i ka Iqaco501 k, L ) 2[sin2B, + Lissin20, -t_ W, (sin20,-.&,sin29,)] 

For the case of a transverse wave incident upon the boundary we have 
(2.21) 

wt=C 

-p (sin2&-LL,,sin282)tg20* 

In the limiting case of a vanishing porosity we obtaik from (2.11) 

which coincides with the well known expressions for the reflection coeffi- 
cients in continuous elastic media (6 3. 

At the conclusion of this section let us mention the case of complete 



1602 L. la. Kosachevskii 

internal reflection. 

We shall neglect the viscosity and assume that the velocities of the 

two longitudinal and the transverse waves satisfy the inequalities 

Cl > c2 > Ct (2.33) 

If the transverse wave hits the boundary, complete internal reflection 

will take place when 

(2.14) 

The angles 8, and 8, to be determined from the relations 

sine, = &sin &, 
Ct 

sin 6? = 22 sillfIt 
Ct 

(2.15) 

then turn out to be complex, and the I IonFitudinal and the transverse 

waves are nonhomogeneous waves, whose amplitudes decrease exponentially 

with distance from the boundary. In the case of the incidence of a II 

longitudinal wave upon the boundary at an angle 8,, which satisfies the 

condition 

sin 0, > $ 

the angle 8, will be complex and the I longitudinal wave 

geneous. 

will be nonhomo- 

3. !&face waves. We shall study the surface waves as a degenerate 
case of the reflection of plane waves. To this end it is necessary, as 

is well known [ 6 I, to let the amplitude of the incident wave approach 

(2.16) 

zero and the reflection coefficients approach infinity so that the ampli- 

tudes of the reflected waves remain finite. Thus we obtain a wave process 

that propagates along the boundary without an incident w,ive, i.e. we shall 

have the case of a surface wave. According to (2.6) the reflection coeffi- 

cients approach infinity under the condition 

(F, - L,,F,) cos 20 t _t p (sin 28, -LIZ rin 20,) Sin 24 = 0 (3.1) 

At the outset we neglect the viscosity and thus we assume all coeffi- 
cients to be real. We introduce the notation 

(3.2) 

Using the relations (sin 0,)/c, = (sin 8,)/c, = (sin 8,1/ct, we reduce 

equation (3.11 to 
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Let us assume that condition (2.13) holds. It is necessary for the 

existence of surface waves that equation (3.3) has a root S > 1. There 

the sines of the angles 8,, 8,, and Bt will be greater than unity, and 
the cosines purely imaginary, and consequently, the surface wave will 

damp out exponentially with distance from the boundary. Along the bound- 

ary it propagates without damping with a phase velocity 

(3.4) 

For S + M, the left-hand side of equation (3.31 reduces to 

- zs[a, -_ih -Ll, (Kg- pjl 
and for S = 1 it is equal to 

- 

(3.5) 

(3.6 

Thus equation (3.3) has at least one root S > 1, when expressions (3.5) 

and (3.6) have opposite signs. If viscosity is taken into account, then 

the corresponding root of equation (3.6) will be complex and consequently 

also the phase velocity (3.4) will be complex. This indicates the presence 

of damping of the surface wave in the direction parallel to the boundary, 

which is caused by the dissipation of its energy due to viscosity. 

In the limiting case of vanishing porosity, equation (3.3) goes over 

into the well known equation describing the propagation of a surface wave 

at the interface between a continuous elastic medium and vacuum [6 1 : 

_- 
'(1-2S)2+ 4s vs I/l-S =-- 0 (3.7) 

In conclusion I would like to express my deep appreciation to Professor 

V.L. German of the Kbar'kov State tbiversity for his suggestionof dealing 

with these problems and for his interest in the work. 
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